Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.683
Filtrar
1.
Arch Endocrinol Metab ; 68: e230292, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38652701

RESUMO

Diabetic retinopathy (DR) is a complication of diabetes with a complex pathophysiology and multiple factors involved. Recently, it has been found that the upregulation of the renin-angiotensin-aldosterone system (RAAS) leads to overexpression of angiotensin II (Ang II), which induces oxidative stress, inflammation, and angiogenesis in the retina. Therefore, RAAS may be a promising therapeutic target in DR. Notably, RAAS inhibitors are often used in the treatment of hypertension. Still, the potential role and mechanism of DR must be further studied. In this review, we discuss and summarize the pathology and potential therapeutic goals of RAAS in DR.


Assuntos
Retinopatia Diabética , Sistema Renina-Angiotensina , Humanos , Retinopatia Diabética/tratamento farmacológico , Retinopatia Diabética/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Angiotensina II/fisiologia , Animais
3.
Nihon Yakurigaku Zasshi ; 158(5): 379-383, 2023.
Artigo em Japonês | MEDLINE | ID: mdl-37673615

RESUMO

The production of angiotensin II (Ang II) in the brain plays important roles as neurotransmitter and neuropeptide. Central Ang II is involved in regulating various physiological processes, such as blood pressure and water homeostasis, via Ang II type 1 (AT1) receptors. We have demonstrated that Ang II induces frequent urination via AT1 receptors in the brain even at doses that does not seem to affect the blood pressure in animal experiment. Intracerebroventricular administration of Ang II was also found to reduce the bladder capacity without affecting the maximum voiding pressure, post voiding residual urine volume or voiding efficiency. Additionally, the activation of AT1 receptor downstream signal pathway (phospholipase C/protein kinase C/NADPH oxidase/superoxide anion) and suppression of GABAergic nervous system in the brain are involved in the mechanism underlying the central Ang II-inducted frequent urination. AT1 receptor blockers (ARBs) have been widely used to treat hypertension. We demonstrated that peripherally administered ARBs telmisartan, which can penetrate blood-brain barrier, exerted an inhibitory effect on central Ang II-inducted frequent urination. We present the possible drug therapy targeting AT1 receptors in the brain against frequent urination on the results obtained from our recent research work.


Assuntos
Antagonistas de Receptores de Angiotensina , Encéfalo , Receptor Tipo 1 de Angiotensina , Bexiga Urinária Hiperativa , Animais , Angiotensina II/fisiologia , Antagonistas de Receptores de Angiotensina/uso terapêutico , Encéfalo/metabolismo , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Micção/fisiologia , Bexiga Urinária Hiperativa/tratamento farmacológico , Bexiga Urinária Hiperativa/fisiopatologia
4.
Surg Clin North Am ; 103(4): 733-743, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37455034

RESUMO

Renovascular hypertension (RVH) is a secondary form of high blood pressure resulting from impaired blood flow to the kidneys with subsequent activation of the renin-angiotensin-aldosterone system. Often, this occurs due to abnormally small, narrowed, or blocked blood vessels supplying one or both kidneys (ie: renal artery occlusive disease) and is correctable. Juxtaglomerular cells release renin in response to decreased pressure, which in turn catalyzes the cleavage of circulating angiotensinogen synthesized by the liver to the decapeptide angiotensin I. Angiotensin-converting enzyme then cleaves angiotensin I to form the octapeptide angiotensin II, a potent vasopressor and the primary effector of renin-induced hypertension. The effects of angiotensin II are mediated by signaling downstream of its receptors. Angiotensin receptor type 1 is a G-protein-coupled receptor that activates vasoconstrictor and mitogenic signaling pathways resulting in peripheral arteriolar vasoconstriction and increased renal tubular reabsorption of sodium and water which promotes intravascular volume expansion. Angiotensin II stimulates the adrenal cortical release of aldosterone, which promotes renal tubular sodium reabsorption, resulting in volume expansion. Angiotensin II acts on glial cells and regions of the brain responsible for blood pressure regulation increasing renal sympathetic activation. Angiotensin II simulates the release of vasopressin from the pituitary which stimulates thirst and water reabsorption from the kidney to expand the intravascular volume and cause peripheral vasoconstriction (increased sympathetic tone). All of these mechanisms coalesce to increase arterial pressure by way of arteriolar constriction, enhanced cardiac output, and the retention of sodium and water.


Assuntos
Hipertensão Renovascular , Hipertensão , Humanos , Hipertensão Renovascular/etiologia , Renina/metabolismo , Angiotensina II/farmacologia , Angiotensina II/fisiologia , Angiotensina I , Hipertensão/complicações , Pressão Sanguínea , Sódio/metabolismo
5.
Exp Physiol ; 108(2): 268-279, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36454195

RESUMO

NEW FINDINGS: What is the central question of this study? Are renal functional responses to intrarenal angiotensin 1-7 (Ang (1-7)) infusion dependent on the level of the endogenous renin-angiotensin system (RAS) in the two-kidney one-clip (2K1C) and deoxycorticosterone acetate (DOCA)-salt animal models of hypertension? What is the main finding and its importance? The renal actions of Ang (1-7) are dependent on the relative endogenous levels of each arm of the classical angiotensin II-angiotensin II type 1 receptor (AT1 R) axis and those of the Ang (1-7)-Mas receptor axis. These findings support the hypothesis that a balance exists between the intrarenal classical and novel arms of the RAS, and in particular the relative abundance of AT1 R to Mas receptor, which may to a large extent determine the renal excretory response to Ang (1-7) infusion. ABSTRACT: This study investigated the action of angiotensin 1-7 (Ang (1-7)) on renal haemodynamic and excretory function in the two-kidney one-clip (2K1C) and deoxycorticosterone acetate (DOCA)-salt rat models of hypertension, in which the endogenous renin-angiotensin system (RAS) activity was likely to be raised or lowered, respectively. Rats were anaesthetised and prepared for the measurement of mean arterial pressure and kidney function during renal interstitial infusion of Ang (1-7) or saline. Kidney tissue concentrations of angiotensin II (Ang II) and Ang (1-7) were determined. Intrarenal infusion of Ang (1-7) into the clipped kidney of 2K1C rats increased urine flow (UV), absolute (UNa V) and fractional sodium (FENa ) excretions by 110%, 214% and 147%, respectively. Renal Ang II concentrations of the clipped kidney were increased with no major changes in Ang (1-7) concentration. By contrast, Ang (1-7) infusion decreased UV, UNa V, and FENa by 27%, 24% and 21%, respectively in the non-clipped kidney in which tissue Ang (1-7) concentrations were increased, but renal Ang II concentrations were unchanged compared to sham animals. Ang (1-7) infusion in DOCA-salt rats had minimal effects on glomerular filtration rate but significantly decreased UV, UNa V and FENa by ∼30%. Renal Ang (1-7) concentrations were higher and Ang II concentrations were lower in DOCA-salt rats compared to sham rats. These findings demonstrate that the intrarenal infusion of exogenous Ang (1-7) elicits different renal excretory responses the magnitude of which is dependent on the balance between the endogenous renal Ang II-AT1 receptor axis and Ang (1-7)-Mas receptor axis.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Ratos , Animais , Angiotensina II/farmacologia , Angiotensina II/fisiologia , Acetato de Desoxicorticosterona/farmacologia , Rim , Hipertensão/induzido quimicamente , Hemodinâmica , Acetatos/farmacologia
6.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362021

RESUMO

Diabetes mellitus (DM) is a chronic progressive metabolic disorder associated with several gastrointestinal complications, affecting up to 75% of patients. Knowing that Angiotensin II (AngII) also regulates intestinal contraction, we decided to evaluate changes in ileum and colon histomorphometry and AngII reactivity in a rat model of DM. Streptozotocin (STZ, 55 mg/kg) was administered to induce DM to 24 adult male Wistar rats. Diabetic rats displayed all the characteristic signs of type 1 DM (T1DM) and fecal excretion increased about 4-fold over 14 days, while the excretion of controls remained unaltered. Compared to controls, diabetic ileum and colon presented an increase in both macroscopic (length, perimeter and weight) and microscopic (muscular wall thickness) parameters. Functionally, AngII-induced smooth muscle contraction was lower in diabetic rats, except in the distal colon. These differences in the contractile response to AngII may result from an imbalance between AngII type 1 (antagonized by candesartan, 10 nM) and type 2 receptors activation (antagonized by PD123319, 100 nM). Taken together, these results indicate that an early and refined STZ-induced T1DM rat model already shows structural remodelling of the gut wall and decreased contractile response to AngII, findings that may help to explain diabetic dysmotility.


Assuntos
Angiotensina II , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animais , Masculino , Ratos , Angiotensina II/farmacologia , Angiotensina II/fisiologia , Colo/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/complicações , Íleo/metabolismo , Ratos Wistar , Estreptozocina/farmacologia
7.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887055

RESUMO

Hypertension is a major public health concern and poses a significant risk for sudden cardiac death (SCD). However, the characterisation of human tissues tends to be macroscopic, with little appreciation for the quantification of the pathological remodelling responsible for the advancement of the disease. While the components of hypertensive remodelling are well established, the timeline and comparative quantification of pathological changes in hypertension have not been shown before. Here, we sought to identify the phasing of cardiac remodelling with hypertension using post-mortem tissue from SCD patients with early and advanced hypertensive heart disease (HHD). In order to study and quantify the progression of phenotypic changes, human specimens were contrasted to a well-described angiotensin-II-mediated hypertensive mouse model. While cardiomyocyte hypertrophy is an early adaptive response in the mouse that stabilises in established hypertension and declines as the disease progresses, this finding did not translate to the human setting. In contrast, optimising fibrosis quantification methods and applying them to each setting identified perivascular fibrosis as the prevailing possible cause for overall disease progression. Indeed, assessing myocardial inflammation highlights CD45+ inflammatory cell infiltration that precedes fibrosis and is an early-phase event in response to elevated arterial pressures that may underscore perivascular remodelling. Along with aetiology insight, we highlight cross-species comparison for quantification of cardiac remodelling in human hypertension. As such, this platform could assist with the development of therapies specific to the disease phase rather than targeting global components of hypertension, such as blood pressure lowering.


Assuntos
Hipertensão , Remodelação Ventricular , Angiotensina II/fisiologia , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Fibrose , Coração , Humanos , Camundongos , Miocárdio/patologia , Miócitos Cardíacos/patologia
8.
Eur J Clin Invest ; 52(4): e13712, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34783022

RESUMO

BACKGROUND: Inhibition of histone deacetylases (HDACs) attenuates cardiac fibrosis. In this study, we evaluated whether the inhibition of class I HDACs can attenuate angiotensin II (ANG II)-induced fibrogenesis and mitochondrial malfunction through its effects on reactive oxygen species (ROS) and calcium dysregulation in human cardiac fibroblasts (CFs). METHODS: Seahorse XF24 extracellular flux analyser, fluorescence staining, Western blotting, HDAC activity assays and Transwell migration assay were used to study mitochondrial respiration, adenosine triphosphate (ATP) production, mitochondrial calcium uptake and ROS, HDAC expression and activity and fibroblast activity in CFs without (control) or with ANG II (100 nM) and/or MS-275 (HDAC class 1 inhibitor, 10 µM) for 24 h. RESULTS: ANG II increased HDAC activity without changing protein expression in CFs. Compared with controls, ANG II-treated CFs had greater migration activity, higher ATP production, maximal respiration and spare capacity with higher mitochondrial Ca2+ uptake and ROS generation, which was attenuated by the administration of MS-275. ANG II activated CFs by increasing mitochondrial calcium content and ATP production, which may be caused by increased HDAC activity. Inhibition of HDAC1 attenuated the effects of ANG II by reducing mitochondrial ROS generation and calcium overload. CONCLUSIONS: Modulating mitochondrial function by regulation of HDAC may be a novel strategy for controlling CF activity.


Assuntos
Angiotensina II/fisiologia , Movimento Celular/fisiologia , Fibroblastos/fisiologia , Histona Desacetilases/fisiologia , Mitocôndrias/fisiologia , Miocárdio/citologia , Angiotensina II/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Inibidores de Histona Desacetilases/farmacologia , Humanos , Mitocôndrias/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
Exp Eye Res ; 213: 108810, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757002

RESUMO

Retinal arterial macroaneurysms are characterized by the acquired fusiform or saccular dilatations of the retinal artery. Angiotensin II (Ang II) is a major signal molecule of the renin-angiotensin system, which exerts a range of pathogenic actions that are relevant to retinal vascular abnormalities. We aimed to study the effect of Ang II on retinal vessels and explore its relationship with retinal aneurysmal disease. C57BL/6J male mice were administered Ang II at 1000 ng/kg/min for 28 days, and the mice given saline served as controls. The mice in the treatment group were treated once daily by gastric gavage of candesartan cilexetil (an antagonist of Ang II type 1 (AT1) receptor) at 100 mg/kg/day. The in vivo imaging of murine retinas was performed using fundus photography, optical coherence tomography, fluorescein angiography, and indocyanine green angiography at 7th, 14th, and 28th days of infusion. At the end of the infusion and treatment, the morphological changes were evaluated by histopathological examination and electron microscopy; the levels of related proteins in murine retinas were examined by antibody array and Western blot analyses. We found that Ang II infusion induced aneurysm formation in mice retina, which presented as either solitary aneurysms or retinal arterial beading. The aneurysm formation was often accompanied with vessel leakage. Moreover, Ang II infusion itself may result in increased vascular permeability and ganglion cell and inner plexiform layer thickening. The blockade of AT1 receptors by systemic administration of candesartan cilexetil alleviated the Ang II-induced retinal vasculopathy. The protein level analysis further showed that Ang II upregulated IL-1ß, PDGFR-ß, and MMP-9 expression, and the expression of IL-1ß could be inhibited by AT1 receptor antagonist. Our study provides evidence that Ang II is a crucial factor in retinal aneurysm formation and vessel leakage. It is probably the combined effect of Ang II on vessel inflammatory response, pericyte function, and extracellular matrix remodeling that predisposes the retinal arterial wall to aneurysm formation and blood-retinal barrier breakdown.


Assuntos
Angiotensina II/fisiologia , Macroaneurisma Arterial Retiniano/metabolismo , Artéria Retiniana/fisiopatologia , Vasoconstritores/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Benzimidazóis/farmacologia , Compostos de Bifenilo/farmacologia , Pressão Sanguínea/fisiologia , Barreira Hematorretiniana , Western Blotting , Corantes/administração & dosagem , Modelos Animais de Doenças , Angiofluoresceinografia , Verde de Indocianina/administração & dosagem , Interleucina-1beta/metabolismo , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Macroaneurisma Arterial Retiniano/diagnóstico , Macroaneurisma Arterial Retiniano/tratamento farmacológico , Tetrazóis/farmacologia , Tomografia de Coerência Óptica
10.
Ann Biomed Eng ; 49(12): 3550-3562, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34704164

RESUMO

The renin-angiotensin system (RAS) is activated in aortic valve disease, yet little is understood about how it affects the acute functional response of valve interstitial cells (VICs). Herein, we developed a gelatin-based valve thin film (vTF) platform to investigate whether the contractile response of VICs can be regulated via RAS mediators and inhibitors. First, the impact of culture medium (quiescent, activated, and osteogenic medium) on VIC phenotype and function was assessed. Contractility of VICs was measured upon treatment with angiotensin I (Ang I), angiotensin II (Ang II), angiotensin-converting enzyme (ACE) inhibitor, and Angiotensin II type 1 receptor (AT1R) inhibitor. Anisotropic cell alignment on gelatin vTF was achieved independent of culture conditions. Cells cultured in activated and osteogenic conditions were found to be more elongated than in quiescent medium. Increased α-SMA expression was observed in activated medium and no RUNX2 expression were observed in cells. VIC contractile stress increased with increasing concentrations (from 10-10 to 10-6 M) of Ang I and Ang II. Moreover, cell contraction was significantly reduced in all ACE and AT1R inhibitor-treated groups. Together, these findings suggest that local RAS is active in VICs, and our vTF may provide a powerful platform for valve drug screening and development.


Assuntos
Valva Aórtica/citologia , Sistema Renina-Angiotensina/fisiologia , Angiotensina I/farmacologia , Angiotensina I/fisiologia , Angiotensina II/farmacologia , Angiotensina II/fisiologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Valva Aórtica/efeitos dos fármacos , Células Cultivadas , Imunofluorescência , Losartan/farmacologia , Miofibroblastos/fisiologia , Peptidil Dipeptidase A/fisiologia , Receptor Tipo 1 de Angiotensina/fisiologia , Suínos , Tetra-Hidroisoquinolinas/farmacologia
11.
Viruses ; 13(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34696336

RESUMO

BACKGROUND: In healthy pregnancies, components of the Renin-Angiotensin system (RAS) are present in the placental villi and contribute to invasion, migration, and angiogenesis. At the same time, soluble fms-like tyrosine kinase 1 (sFlt-1) production is induced after binding of ANG-II to its receptor (AT-1R) in response to hypoxia. As RAS plays an essential role in the pathogenesis of COVID-19, we hypothesized that angiogenic marker (sFlt-1) and RAS components (ANG-II and ACE-2) may be related to adverse outcomes in pregnant women with COVID-19; Methods: Prospective cohort study. Primary outcome was severe pneumonia. Secondary outcomes were ICU admission, intubation, sepsis, and death. Spearman's Rho test was used to analyze the correlation between sFlt-1 and ANG-II levels. The sFlt-1/ANG-II ratio was determined and the association with each adverse outcome was explored by logistic regression analysis and the prediction was assessed using receiver-operating-curve (ROC); Results: Among 80 pregnant women with COVID-19, the sFlt-1/ANG-II ratio was associated with an increased probability of severe pneumonia (odds ratio [OR]: 1.31; p = 0.003), ICU admission (OR: 1.05; p = 0.007); intubation (OR: 1.09; p = 0.008); sepsis (OR: 1.04; p = 0.008); and death (OR: 1.04; p = 0.018); Conclusion: sFlt-1/ANG-II ratio is a good predictor of adverse events such as pneumonia, ICU admission, intubation, sepsis, and death in pregnant women with COVID-19.


Assuntos
Angiotensina II/metabolismo , COVID-19/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Angiotensina II/análise , Angiotensina II/fisiologia , Biomarcadores , COVID-19/complicações , Estudos de Coortes , Estado Terminal , Feminino , Humanos , México/epidemiologia , Placenta/metabolismo , Pré-Eclâmpsia , Gravidez , Gestantes , Estudos Prospectivos , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/análise , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/fisiologia
12.
Theranostics ; 11(18): 8624-8639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34522203

RESUMO

Rationale: The rennin-angiotensin-aldosterone system (RAAS) plays a critical role in the pathogenesis of diabetic cardiomyopathy, but the role of a member of RAAS, angiotensin IV (Ang IV), in this disease and its underlying mechanism are unclear. This study was aimed to clarify the effects of Ang IV and its downstream mediator forkhead box protein O1 (FoxO1) on diabetic cardiomyopathy. Methods:In vivo, diabetic mice were treated with low-, medium- and high-dose Ang IV, AT4R antagonist divalinal, FoxO1 inhibitor AS1842856 (AS), or their combinations. In vitro, H9C2 cardiomyocytes and cardiac fibroblasts were treated with different concentrations of glucose, low-, medium- and high-dose Ang IV, divalinal, FoxO1-overexpression plasmid (FoxO1-OE), AS, or their combinations. Results: Ang IV treatment dose-dependently attenuated left ventricular dysfunction, fibrosis, and myocyte apoptosis in diabetic mice. Besides, enhanced autophagy and FoxO1 protein expression by diabetes were dose-dependently suppressed by Ang IV treatment. However, these cardioprotective effects of Ang IV were completely abolished by divalinal administration. Bioinformatics analysis revealed that the differentially expressed genes were enriched in autophagy, apoptosis, and FoxO signaling pathways among control, diabetes, and diabetes+high-dose Ang IV groups. Similar to Ang IV, AS treatment ameliorated diabetic cardiomyopathy in mice. In vitro, high glucose stimulation increased collagen expression, apoptosis, overactive autophagy flux and FoxO1 nuclear translocation in cardiomyocytes, and upregulated collagen and FoxO1 expression in cardiac fibroblasts, which were substantially attenuated by Ang IV treatment. However, these protective effects of Ang IV were completely blocked by the use of divalinal or FoxO1-OE, and these detrimental effects were reversed by the additional administration of AS. Conclusions: Ang IV treatment dose-dependently attenuated left ventricular dysfunction and remodeling in a mouse model of diabetic cardiomyopathy, and the mechanisms involved stimulation of AT4R and suppression of FoxO1-mediated fibrosis, apoptosis, and overactive autophagy.


Assuntos
Angiotensina II/análogos & derivados , Cardiomiopatias Diabéticas/fisiopatologia , Proteína Forkhead Box O1/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Angiotensina II/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Glicemia , Linhagem Celular , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Fibrose/fisiopatologia , Proteína Forkhead Box O1/fisiologia , Glucose/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quinolonas/farmacologia , Transdução de Sinais , Estreptozocina/farmacologia , Disfunção Ventricular Esquerda
13.
Biomolecules ; 11(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34439742

RESUMO

Angiotensin II (Ang II) induces vasoconstriction through myosin light chain (MLC) kinase activation and MLC phosphatase inactivation via phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) by Rho kinase. However, the detailed mechanism underlying Rho kinase activation by Ang II is still unknown. We investigated the mechanism of Ang II-induced vasoconstriction mediated by Rho kinase in pressure-overloaded rat thoracic aortas. Pressure-overloaded rats were produced by coarctation of the suprarenal abdominal aorta in four-week-old male Wistar rats. The contractile response to Ang II was significantly enhanced in the pressure-overloaded rats. Ang II-induced vasoconstriction was attenuated by inhibitors of Rho kinase, extracellular signal-regulated kinase 1 and 2 (Erk1/2), and epidermal growth factor receptor (EGFR) in both the sham-operated and pressure-overloaded rats. The Ang II-induced vasoconstriction was attenuated by a Janus kinase 2 (JAK2) inhibitor in only the pressure-overloaded rats. The protein levels of MYPT1 and JAK2 increased only in the pressure-overloaded rat thoracic aortas. These results suggested that Ang II-induced contraction is mediated by Rho kinase activation via EGFR, Erk1/2, and JAK2 in pressure-overloaded rat thoracic aortas. Moreover, Ang II-induced contraction was enhanced in pressure-overloaded rats probably because the protein levels of MYPT1 and JAK2 increased in the thoracic aortas.


Assuntos
Angiotensina II/fisiologia , Aorta Torácica/metabolismo , Vasoconstrição , Quinases Associadas a rho/metabolismo , Animais , Aorta Torácica/patologia , Masculino , Ratos , Ratos Wistar
14.
Nephron ; 145(5): 518-527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34062539

RESUMO

BACKGROUND: Increasing evidence suggests that angiotensin II (Ang II), the bioactive pro-oxidant in the renin-angiotensin system, aggravates fibrosis, and the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is involved in multiple diseases, such as renal fibrosis. However, the role and underlying mechanism of Ang II in renal fibrosis remain unclear. Here, we investigated whether the NLRP3 inflammasome mediated Ang II-induced renal fibrosis, as well as the downstream pathways involved in this process. METHODS: NLRP3-/- mice were used as a model to study Ang II-infused renal fibrosis. Mice were divided into 4 groups: sham wild type, Ang II-infused wild type, sham NLRP3-/-, and Ang II-infused NLRP3-/- groups. Ang II infusion-induced renal injury was confirmed by periodic acid-Schiff and Masson's staining, immunohistochemistry, and transmission electron microscopy (TEM). Mitochondrial morphology was presented on TEM micrographs, and mitochondrial function was reflected by the protein levels of peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), mitochondrial transcription factor A (TFAM), dynamin-related protein 1 (DRP1), and mitofusin 2 (MFN2), as assessed by Western blotting. Endoplasmic reticulum (ER) stress was characterized by changes in the levels of ER chaperones, such as GRP94, BiP, CHOP, and caspase 12. RESULTS: Ang II infusion increased cell proliferation, extracellular matrix overproduction, inflammatory cell infiltration, and glomerulosclerosis and induced obvious morphological abnormalities in podocytes. Ang II infusion promoted mitochondrial damage, as indicated by TEM, and induced mitochondrial dysfunction, as evidenced by downregulation of PGC-1α, TFAM, and increased mitochondrial ROS. In addition, DRP1 expression was upregulated, while MFN2 expression was markedly decreased. The levels of GRP94, BiP, CHOP, and caspase 12 were significantly increased. However, all these detrimental effects were attenuated by NLRP3 deletion. CONCLUSIONS: NLRP3 deletion may attenuate angiotensin II-induced renal fibrosis by improving mitochondrial dysfunction and ER stress.


Assuntos
Angiotensina II/fisiologia , Estresse do Retículo Endoplasmático , Nefropatias/fisiopatologia , Mitocôndrias/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Angiotensina II/administração & dosagem , Animais , Humanos , Nefropatias/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Mediators Inflamm ; 2021: 9938486, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986629

RESUMO

This study explored the effects of renal sympathetic denervation (RDN) on hyperlipidity-induced cardiac hypertrophy in beagle dogs. Sixty beagles were randomly assigned to the control group, RDN group, or sham-operated group. The control group was fed with a basal diet, while the other two groups were given a high-fat diet to induce model hypertension. The RDN group underwent an RDN procedure, and the sham-operated group underwent only renal arteriography. At 1, 3, and 6 months after the RDN procedure, the diastolic blood pressure (DBP) and systolic blood pressure (SBP) levels were markedly decreased in the RDN group relative to the sham group (P < 0.05). After 6 months, serum norepinephrine (NE) and angiotensin II (AngII), as well as left ventricular levels, in the RDN group were statistically lower than those in the sham group (P < 0.05). Also, the left ventricular mass (LVM) and left ventricular mass index (LVMI) were significantly decreased, while the E/A peak ratio was drastically elevated (P < 0.05). Pathological examination showed that the degree of left ventricular hypertrophy and fibrosis in the RDN group was statistically decreased relative to those of the sham group and that the collagen volume fraction (CVF) and perivascular circumferential collagen area (PVCA) were also significantly reduced (P < 0.05). Renal sympathetic denervation not only effectively reduced blood pressure levels in hypertensive dogs but also reduced left ventricular hypertrophy and myocardial fibrosis and improved left ventricular diastolic function. The underlying mechanisms may involve a reduction of NE and AngII levels in the circulation and myocardial tissues, which would lead to the delayed occurrence of left ventricular remodeling.


Assuntos
Ablação por Cateter/métodos , Hipertensão/cirurgia , Hipertrofia Ventricular Esquerda/cirurgia , Simpatectomia/métodos , Angiotensina II/análise , Angiotensina II/fisiologia , Animais , Ablação por Cateter/efeitos adversos , Cães , Feminino , Hipertrofia Ventricular Esquerda/patologia , Masculino , Norepinefrina/análise , Norepinefrina/fisiologia , Simpatectomia/efeitos adversos
16.
Hum Cell ; 34(3): 734-744, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33683655

RESUMO

In malaria-endemic countries, the burden of hypertension is on the rise. Although malaria and hypertension seem to have no direct link, several studies in recent years support their possible link. Three bioactive molecules such as angiotensin II (Ang II), bradykinin (BK) and sphingosine 1-phosphate (S1P) are crucial in regulating blood pressure. While the increased level of Ang II and S1P are responsible for inducing hypertension, BK is arthero-protective and anti-hypertensive. Therefore, in the present review, based on available literatures we highlight the present knowledge on the production and bioavailability of these molecules, the mechanism of their regulation of hypertension, and patho-physiological role in malaria. Further, a possible link between malaria and hypertension is hypothesized through various arguments based on experimental evidence. Understanding of their mechanisms of blood pressure regulation during malaria infection may open up avenues for drug therapeutics and management of malaria in co-morbidity with hypertension.


Assuntos
Angiotensina II/fisiologia , Bradicinina/fisiologia , Hipertensão/etiologia , Lisofosfolipídeos/fisiologia , Malária/complicações , Esfingosina/análogos & derivados , Pressão Sanguínea , Comorbidade , Feminino , Humanos , Hipertensão/epidemiologia , Malária/epidemiologia , Masculino , Gravidez , Esfingosina/fisiologia
18.
Artigo em Inglês | MEDLINE | ID: mdl-33745438

RESUMO

INTRODUCTION: Angiotensin II (ANG II) and vasopressin (VP) interact in several physiological mechanisms, playing a role in arterial hypertension and congestive heart failure. Aim and Methods of Search: To overview the primary mechanism involved in the regulation of cardiovascular function, PubMed/Medline was searched, and authors selected original articles and reviews written in English. RESULTS: Angiotensin II (ANG II) and vasopressin (VP) are involved in several physiological mechanisms. ANG II stimulates VP release via angiotensin receptor 1. ANG II and VP stimulate aldosterone synthesis and secretion and enhance its action at the renal collecting duct level. VP is also involved in the cardiovascular reflex control of the sympathetic nervous system (SNS). Also, VP potentiates vasoconstriction and cardiac contractility, enhancing the effect of ANG II on sympathetic tone and arterial pressure. On the other hand, ANG II and VP act antagonistically in regulating baroreflex control of the SNS. There is evidence that high VP plasma levels increase baroreflex sympatho-inhibitory responses, and the arterial baroreflex response is shifted to lower pressure. This cardiovascular reflex control is mediated mainly in the brain, specifically in the circumventricular organ area postrema (AP). The modulation of cardiovascular reflex control induced by VP is abolished after lesions of the AP. VP modulation of baroreflex function is also under the control of α2-adrenergic pathway arising from the nucleus of the solitary tract (NTS) and synapsing on VP-ergic neurons of supraoptic and paraventricular nuclei. Presynaptic α2-adrenergic stimulation within the NTS inhibits VP release induced by hypovolemia and the effects of VP and AP on baroreflex control of SNS, thus showing baroreceptor afferent inputs are processed within the NTS and contribute to the increased baroreflex sympatho-inhibitory responses. DISCUSSION: In patients with congestive heart failure (CHF), plasma VP levels are elevated, inducing an up-regulation of aquaporin 2 water channel expression in renal collecting duct (CD) cells provoking exaggerated water retention and dilutional hyponatremia. Antagonists of VP and ANG II receptors reduce edema, body weight, and dyspnea in CHF patients. CONCLUSION: Hormonal imbalance between ANG II, VP, and SNS may induce hypertension and impaired water-electrolyte balance in cardiovascular diseases.


Assuntos
Angiotensina II/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Insuficiência Cardíaca/fisiopatologia , Hipertensão/fisiopatologia , Vasopressinas/fisiologia , Angiotensina II/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Humanos , Receptor Cross-Talk/fisiologia , Reflexo Anormal/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Vasopressinas/metabolismo
19.
Nat Rev Nephrol ; 17(5): 350-363, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33627838

RESUMO

Dietary salt intake increases blood pressure (BP) but the salt sensitivity of BP differs between individuals. The interplay of ageing, genetics and environmental factors, including malnutrition and stress, contributes to BP salt sensitivity. In adults, obesity is often associated with salt-sensitive hypertension. The children of women who experience malnutrition during pregnancy are at increased risk of developing obesity, diabetes and salt-sensitive hypertension as adults. Similarly, the offspring of mice that are fed a low-protein diet during pregnancy develop salt-sensitive hypertension in association with aberrant DNA methylation of the gene encoding type 1A angiotensin II receptor (AT1AR) in the hypothalamus, leading to upregulation of hypothalamic AT1AR and renal sympathetic overactivity. Ageing is also associated with salt-sensitive hypertension. In aged mice, promoter methylation leads to reduced kidney production of the anti-ageing factor Klotho and a decrease in circulating soluble Klotho. In the setting of Klotho deficiency, salt-induced activation of the vascular Wnt5a-RhoA pathway leads to ageing-associated salt-sensitive hypertension, potentially as a result of reduced renal blood flow and increased peripheral resistance. Thus, kidney mechanisms and aberrant DNA methylation of certain genes are involved in the development of salt-sensitive hypertension during fetal development and old age. Three distinct paradigms of epigenetic memory operate on different timescales in prenatal malnutrition, obesity and ageing.


Assuntos
Metilação de DNA , Hipertensão/etiologia , Cloreto de Sódio na Dieta/efeitos adversos , Envelhecimento/fisiologia , Aldosterona/fisiologia , Angiotensina II/fisiologia , Animais , Transtornos da Nutrição Fetal/fisiopatologia , Glucuronidase/fisiologia , Humanos , Proteínas Klotho , Obesidade/complicações , Estresse Oxidativo , Receptores de Mineralocorticoides/fisiologia , Circulação Renal , Via de Sinalização Wnt/fisiologia
20.
Phytomedicine ; 82: 153461, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33497927

RESUMO

BACKGROUND: Cardiac hypertrophy and fibrosis are closely related to cardiac dysfunction, especially diastolic dysfunction. Limited medications can be used to simultaneously delay cardiac hypertrophy and fibrosis in clinical practice. Piperlongumine (PLG) is an amide alkaloid extracted from Piper longum and has been shown to have multiple biological effects, including anticancer and antioxidant effects. However, the role of PLG in cardiac hypertrophy and fibrosis is not clear. PURPOSE: The aim of this study was to reveal the role of PLG in cardiac hypertrophy and fibrosis and the associated mechanism. METHODS: Cardiac hypertrophy and fibrosis were induced by angiotensin II (Ang II) in vivo and in vitro. The effect of PLG in vivo, in vitro and its mechanism were investigated by proliferation and apoptosis assays, western blot, real-time PCR, immunofluorescence, histochemistry, echocardiography, flow cytometry and chromatin immunoprecipitation. RESULTS: Proliferation and apoptosis assays showed that 2.5 µM PLG slightly inhibited proliferation and did not promote apoptosis. Treatment with 5 mg/kg PLG obviously inhibited Ang II-induced cardiac hypertrophy and fibrosis in vivo. In vitro studies of neonatal rat cardiomyocytes (NRCMs) showed that the anti-hypertrophic effect of PLG was mediated by reducing the phosphorylation of Akt and thereby preserving the level of Forkhead box transcription factor O1 (FoxO1), since knockdown of FoxO1 by siRNA reversed the protective effect of PLG on NRCMs. In addition, PLG significantly decreased the Ang II-induced expression of profibrotic proteins in neonatal cardiac fibroblasts by reducing the expression of Krüppel-like factor 4 (KLF4) and the recruitment of KLF4 to the promoter regions of transforming growth factor-ß and connective tissue growth factor. CONCLUSION: We demonstrate the cardioprotective effects of PLG in both cardiac hypertrophy and fibrosis and the potential value of PLG for developing novel medications for pathological cardiac hypertrophy and heart failure.


Assuntos
Angiotensina II/fisiologia , Cardiomegalia/prevenção & controle , Dioxolanos/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Fibroblastos/efeitos dos fármacos , Fibrose/prevenção & controle , Insuficiência Cardíaca/metabolismo , Fator 4 Semelhante a Kruppel , Miócitos Cardíacos/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...